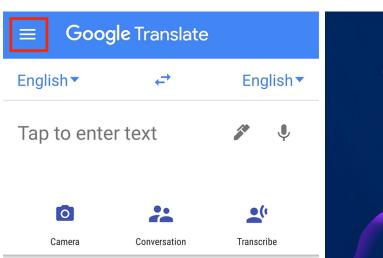
Interpretable Transformer Neural Network Prediction of Diverse Environmental Time Series Using Weather Forecasts

Enrique Orozco López and David Kaplan

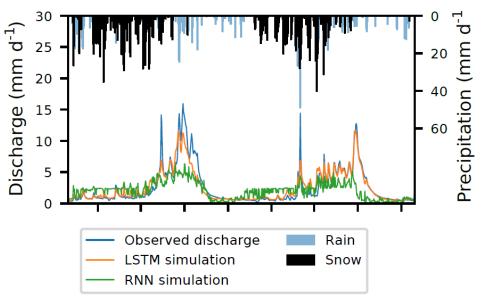
Engineering School of Sustainable Infrastructure and

Environment, University of Florida



CENTER FOR COASTAL SOLUTIONS UNIVERSITY OF FLORIDA

Transformers


Vaswani et al., 2017. Attention Is All You Need

Motivation

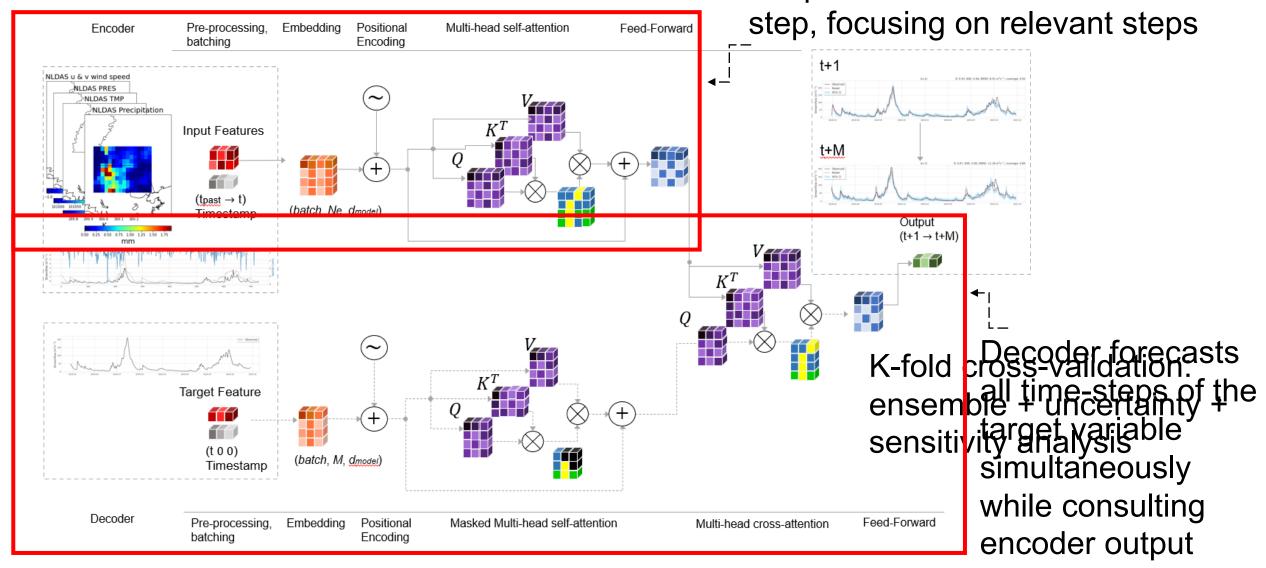
- Increasing climate variability → flash extreme system responses (floods, droughts, extreme salinity fluctuations, etc).
- Transformer neural networks (TNNs) focus and model the most relevant interdependencies in complex datasets
- How to measure the impact of individual variables in the model output across different environmental conditions?

Flooded neighborhood in the aftermath of Hurrican Ian. Sep 2022, Orlando, FL (AP photo/Phelan M. Ebenhack)

Rainfall–runoff modelling using LSTM networks. Kratzert et al. (2019)

Objectives

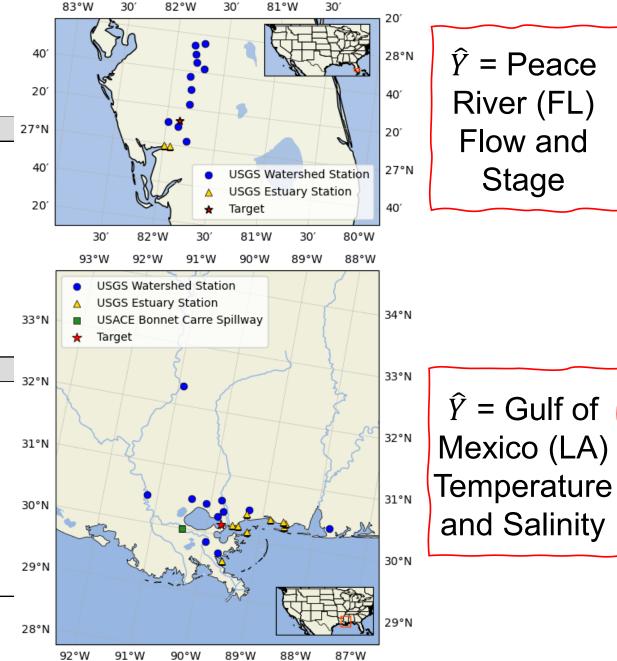
- TNN for environmental time series forecasting:
 - Middle-range daily forecasts (up to 14 days) of different environmental variables
 + prediction uncertainty
 - Use past gauged values and weather forecasts
- Analyze models' sensitivities to identify the most influential input variables across environmental conditions


Impacted ecology in salty lagoon after freshwater flash flood. Nov 2019, Mar Menor in Murcia, Spain

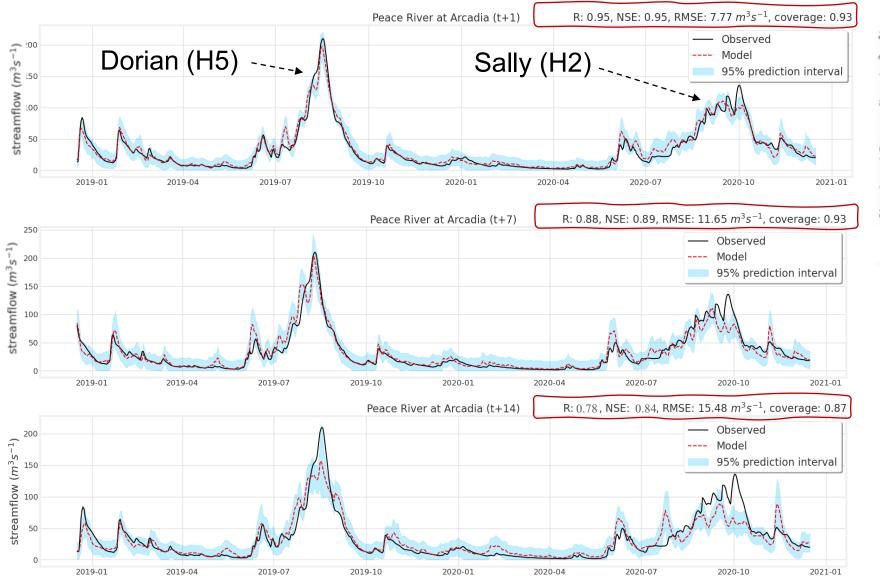
National water information system mapper. United states geological survey

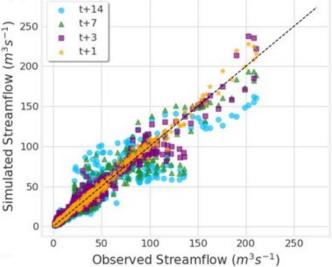
Transformer Model

NLP-based encoder reads input and generates a representation for each time


Scenarios and Input Data

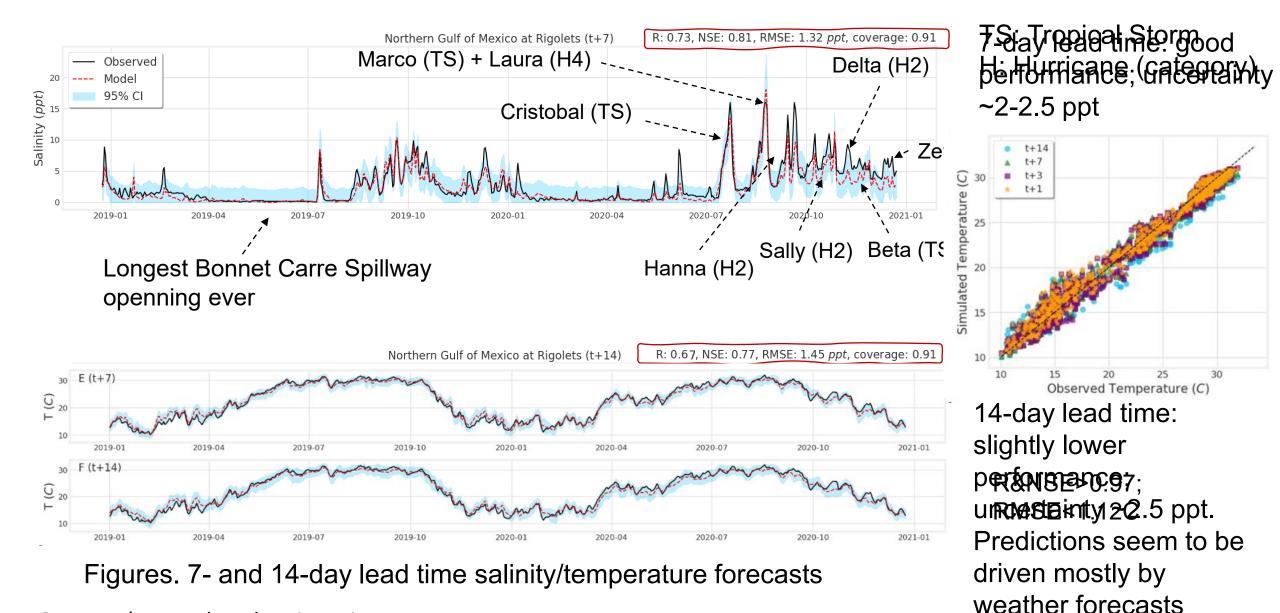
Input Variables


	Dataset 1 Variable	Unit	Source	Quantity	2
forecast	Streamflow (Q)	m ³ s ⁻¹	USGS	12	
	Gage height (GH)	m	USGS	12	
	Soil Moisture (Θ)	m³/m³	Copernicus	13	
	Precipitation (r)	mm	NLDAS	45	
	2-m above ground specific humidity (h)	kg/kg	NLDAS	45	
	2-m above ground temperature (Ta)	С	NLDAS	36	
	10-m above ground zonal wind speed (u)	m/s	NLDAS	36	
	10-m above ground meridional wind speed (v)	m/s	NLDAS	36	3
	Solar radiation flux downwards (s)	W/m^2	NLDAS	36	
	Dataset 2 Variable	Unit	Source	Quantity	
†					
↑	Discharge (Q)	$m^{3} s^{-1}$	USGS	11	
	Discharge (<i>Q</i>) Gage height (<i>GH</i>)	m ³ s ⁻¹ m	USGS USGS	11 49	
oast					3
past	Gage height (GH)	m	USGS	49	
past	Gage height (<i>GH</i>) Salinity at Lake Pontchartrain with Northern Gulf	m ppt	USGS USGS	49 1	3
	Gage height (<i>GH</i>) Salinity at Lake Pontchartrain with Northern Gulf Discharge from Bonnet Carre Spillway	m ppt m ³ s ⁻¹	USGS USGS USACE	49 1 1	3
	Gage height (<i>GH</i>) Salinity at Lake Pontchartrain with Northern Gulf Discharge from Bonnet Carre Spillway Precipitation (<i>r</i>)	m ppt m ³ s ⁻¹ mm	USGS USGS USACE NLDAS	49 1 1 204	3
forecast	 Gage height (<i>GH</i>) Salinity at Lake Pontchartrain with Northern Gulf Discharge from Bonnet Carre Spillway Precipitation (<i>r</i>) Surface pressure (<i>P</i>) 	m ppt m ³ s ⁻¹ mm Pa	USGS USGS USACE NLDAS NLDAS	49 1 1 204 60	3
	 Gage height (<i>GH</i>) Salinity at Lake Pontchartrain with Northern Gulf Discharge from Bonnet Carre Spillway Precipitation (<i>r</i>) Surface pressure (<i>P</i>) 2-m above ground temperature (<i>T_a</i>) 	m ppt m ³ s ⁻¹ mm Pa C	USGS USGS USACE NLDAS NLDAS NLDAS	49 1 1 204 60 60	3


*NLDAS (National Land Data Assimilation Service)

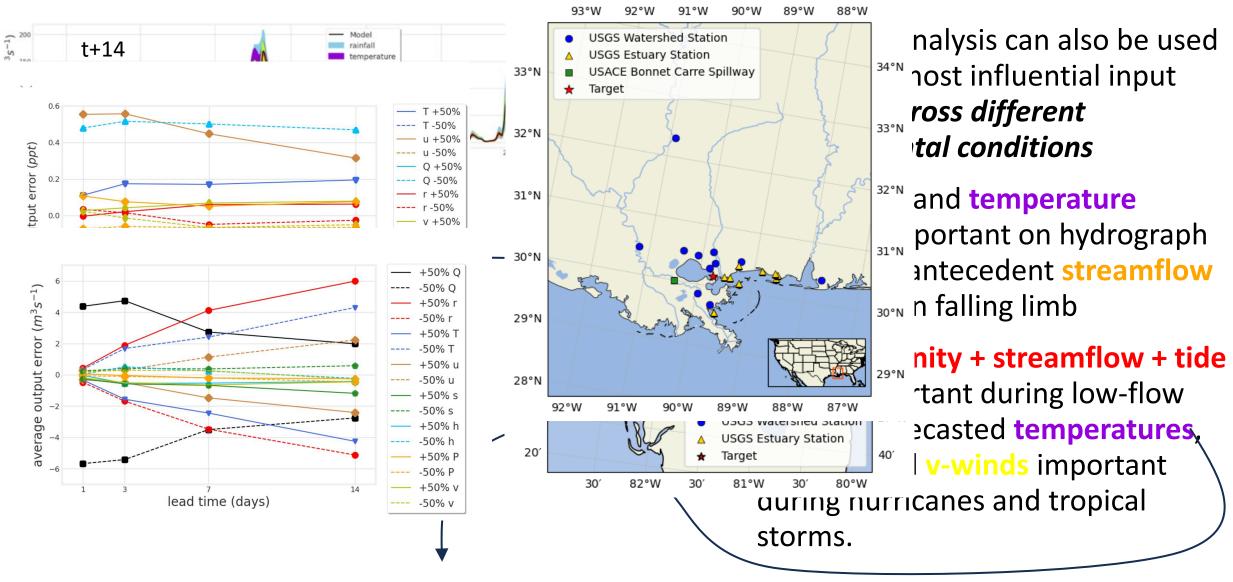
Orozco-López and Kaplan, in review

Streamflow Forecasting Results



7-day lead time: very good performance; uncertainties ~15-25 cms

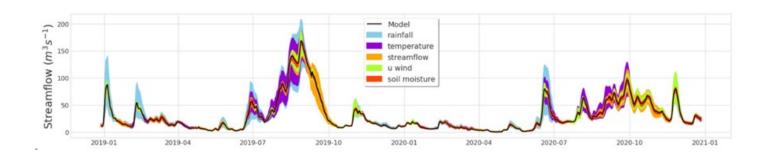
14-day lead time: good performance; uncertainties ~35-40 cms


Figure. Results from 1-,7-, and 14-day streamflow forecasting model

Salinity and Temperature Forecasting Results

Orozco-López and Kaplan, in review

Sensitivity Analysis



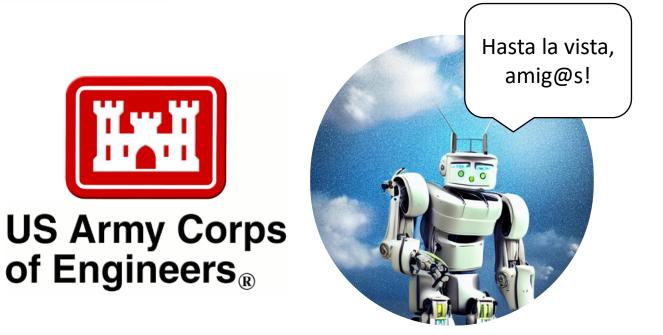
Orozco-López and Kaplan, in review

- Transformers:
 - Very good performance for middle-range environmental forecasting
 - Non-iterative inference: no accumulation of error
- Sensitivity analysis highlights:
 - Interpretability of the TNN models' temporal sensitivity to hydroclimatic input factors
 - As forecasting lead time increases, models' decisions move from past data to forecasts
 - The TNN evidence flexibility to adapt and ability to learn physical patterns directly from

data.

Acknowledgments

CENTER FOR COASTAL SOLUTIONS UNIVERSITY OF FLORIDA



DEPART

MMENTAL PRO

eorozcolopez@ufl.edu